
LLNL-PRES-736379
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lossy compression algorithms for
floating-point data
JSM 2017

Peter Lindstrom
pl@llnl.gov

July 31, 2017



LLNL-PRES-736379
2

Numerical data is challenging to compress 
losslessly

1.11 1.07 1.05 1.04 1.03 1.02 1.01

[L
in

ds
tr

om
 '0

6]

[A
lte

d 
'0

9]
 

[B
ur

ts
ch

er
 '0

7]

[B
ur

ts
ch

er
 '1

6]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

fpzip BLOSC FPC gzip szip SPDP bzip2

co
m

pr
es

si
on

 ra
tio

 (u
nc

om
p.

/c
om

p.
 s

iz
e)



LLNL-PRES-736379
3

§ Large improvements in compression possible by allowing even 
small errors
— Least significant floating-point bits are effectively random noise
— Most compressors support relative or absolute error tolerances

§ Compressors must be cognizant of how compression errors 
propagate in data analysis

(ideally zero mean)
of error with function (ideally independent)

of error (ideally uncorrelated)
of error (ideally white noise)

of error (e.g. uniform, normal, Laplace, …)
— Impact on like extrema, mean/median, moments, …
— Impact on like spatial & temporal derivatives

§ This talk will examine error distributions for several compressors

Lossy compression enables greater reduction, 
but is often met with skepticism by scientists 



LLNL-PRES-736379
4

§ 1. data to make it more compressible
— E.g. prediction, fitting, transformation, decomposition, …
— Make the data sparse in some alternative representation
— Small values, repeated patterns are easier to compress

§ 2. (for lossy compression)
— E.g. scalar/vector quantization, truncation, thresholding, …
— Discard unimportant information to avoid encoding it

§ 3. remaining information losslessly
— E.g. Huffman, arithmetic, universal, run-length, dictionary, …

Numerical data compression usually involves 
three steps



LLNL-PRES-736379
5

1. : adaptive scalar quantization [Iverson et al. 2013]
2. : hierarchical vector quantization [Schneider & Westermann 2003]
3. : error-bounded polynomial prediction [Di & Cappello 2016]
4. : lossless/lossy predictive coding [Lindstrom & Isenburg 2006]
5. : block transform with embedded coding [Lindstrom 2014]
6. : wavelet transform & thresholding [Clyne et al. 2007]
7. : tensor decomposition & thresholding [Ballester & Pajarola 2016]
8. : sorting and spline fitting [Lakshminarasimhan et al. 2013]

Challenge: Compress 3D scalar field, f(x, y, z), defined on uniform Cartesian grid

Case study: 8 lossy floating-point compressors 
in 8 minutes!



LLNL-PRES-736379
6

§ [SQ] algorithm partitions data into ε-sized ranges
— Sort data on function value
— Greedily grow set Si as long as max Si – min Si ≤ ε
— Use as prototype pi = mean Si

• Minimizes RMS error
— Replace values assigned to set Si with index i
— LZMA compress codebook {pi} and indices {i}

SQ: Adaptive, error-bounded scalar 
quantization

✏

✏

✏

✏

S1 S2 S3 S4



LLNL-PRES-736379
7

SQ error distribution is nearly uniform but 
overly conservative

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
8

§ Similar to scalar quantization, but applied to multi-
component vectors
— E.g. vector/tensor fields, multiple correlated fields, blocks of values, …
— Can be done non-uniformly in both domain and range

§ Hierarchical VQ [HVQ] uses different codebook on each level 
— Vectors formed by 4 × 4 × 4 blocks of values

• Next level given by block averages
— Codebook is generated using Lloyd relaxation

• Randomly select initial prototypes
• Partition data by closest prototype
• Replace prototype with mean/medoid/Voronoi centroid

§ Most effective for low-precision data like 8-bit RGB
— Codebook size, compute time become prohibitive for higher precision

HVQ: Hierarchical Vector Quantization



LLNL-PRES-736379
9

VQ errors are difficult to bound due to 
difficulty of creating good codebook

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
10

§ Polynomial of degree n – 1 predicts next value from last n
transmitted values
— Use best of three predictors: constant, linear, quadratic
— “Mispredictions” outside of tolerance ±ε are corrected

SZ: Polynomial prediction extrapolates from 
past data points

2✏

x

f(x)



LLNL-PRES-736379
11

SZ error distribution is approximately uniform 
and spans full tolerance

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
12

fpzip: Lossless mode combines multi-
dimensional prediction with entropy coding

input
stream linearization

prediction linearization — alphabet
partitioning

probability
modeling

entropy
coding

output
stream

predict	next	data	element
from	already	coded	ones

reinterpret	floats	as
sign-magnitude	integers

compute	integer	residual
split	residual	into
sign/width,	value

update	stats
on	sign/width
distribution

assign	short	code-
words	to	frequent
sign/width	pairs

recombine	entropy
codes,	value	bits

+ 1 0010110

value bits

r =
widthsign

value	bits

sign/width



LLNL-PRES-736379
13

fpzip: Lossy mode truncates (zeros) least 
significant bits, then compresses losslessly

input
stream linearization

prediction linearization — alphabet
partitioning

probability
modeling

entropy
coding

output
stream

truncation

truncation



LLNL-PRES-736379
14

fpzip error distribution is dependent on 
function value f and is highly biased

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
15

fpzip systematic rounding toward zero leads 
to occasional issues in climate data analysis

#31, #33 compressed 
ensemble members



LLNL-PRES-736379
161

6

Raw floating-
point array

Block floating-
point transform

Orthogonal
block transform

Embedded
coding

Compressed
bit stream

§ Align values in a 4d block to a 
common largest exponent

§ Transmit exponent verbatim

§ Lifted, separable transform 
using integer adds and shifts

§ Similar to but faster and more 
effective than JPEG DCT

§ Encode one bit plane at a time 
from MSB using group testing

§ Each bit increases quality—
can truncate stream anywhere



LLNL-PRES-736379
17

Free parameter t

Ba
si

s 
fu

nc
tio

ns
fo

rt
 =

 1/
4

Increasing frequency (polynomial degree)



LLNL-PRES-736379
18

Haar

Slant

ZFP

DCT-II

HCT

Walsh-Hadamard

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

90% 

91% 

92% 

93% 

94% 

95% 

96% 

97% 

98% 

99% 

100% 

0.00 0.25 0.50 0.75 1.00

co
di

ng
 g

ai
n 

re
la

tiv
e 

to
 K

LT

de
co

rr
el

at
io

n 
ef

fic
ie

nc
y

transform family parameter t

x += w; x >>= 1; w -= x;
z += y; z >>= 1; y -= z;
x += z; x >>= 1; z -= x;
w += y; w >>= 1; y -= w;
w += y >> 1; y -= w >> 1;



LLNL-PRES-736379
19

ZFP error distribution is normal due to linear 
transform of iid. errors (central limit theorem)

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
20

§ Basis functions are given by translations and dilations of 
single mother wavelet

VAPOR: Discrete wavelet transform with 
coefficient thresholding

Haar linear B-spline cubic B-spline CDF 9/7



LLNL-PRES-736379
21

VAPOR wavelet errors are difficult to bound 
due to cascading effects

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
22

§ 2D structured grid data can be approximated via truncated SVD

— Singular value matrix, Σ, is diagonal but singular vectors, U and V, are data-dependent
• U and V are expensive to encode for 2D data

— A can be optimally approximated in the L2 sense by discarding smallest singular values

§ d-dimensional structured grid data can be approximated via tensor 
decomposition

— Unlike in SVD, core tensor, S, is not diagonal, but large values appear in “hot corner”
• U, V, and W matrices are relatively cheap to encode for 3D data

Tucker: Generalization of SVD using Tucker 
tensor decomposition, core tensor truncation

diag(�1, �2, . . . ,�n) = ⌃ = UT AV = unvec
�
(V ⌦ U)T vec(A)

�

S = A⇥1 U ⇥2 V ⇥3 W = unvec
�
(W ⌦ V ⌦ U)Tvec(A)

�



LLNL-PRES-736379
23

As in SVD, truncated core tensor & factor 
matrices yield “best” low-rank approximation

U1

U2
U3

A

n1 ⇥ n1

n2 ⇥ n2

n3 ⇥ n3

n1 ⇥ n2 ⇥ n3

S

n1 ⇥ n2 ⇥ n3

=

S = A⇥1 U1 ⇥2 U2 ⇥3 U3

mode-1 inner product

core tensor



LLNL-PRES-736379
24

Like wavelets, Tucker tensor decomposition 
errors are difficult to bound tightly

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
25

§ Most compression techniques fail miserably on noisy/unstructured data

§ [ISABELA]: Sort noisy data, encode permutation, fit smooth sorted signal

ISABELA: Sorting and spline fitting enables 
compression of even the noisiest data sets

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0
-1.0 -0.5 0.5 1.0

original sorted spline fit residual

original histogram residual histogram



LLNL-PRES-736379
26

Like fpzip, ISABELA bounds relative errors, but 
without bias

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2



LLNL-PRES-736379
27

ZFP and SZ decorrelate error with function

-1E-01 

-1E-02 

-1E-03 
-1E-04 

1E-04 
1E-03 

1E-02 

1E-01 

-1E+00 

0E+00 

1E+00 

0 8 16 24 32 40 48 56 64

co
rr

el
at

io
n 

of
 fu

nc
tio

n 
w

ith
 e

rr
or

rate (bits/value)

zfp sz fpzip lz4p



LLNL-PRES-736379
28

Some compressors yield autocorrelated errors

fpzip
9.61 bits/value

‖R‖ = 2.2e-2

ZFP
0.34 bits/value

‖R‖ = 2.8e-4

SZ
0.33 bits/value

‖R‖ = 4.6e-3

SQ
0.42 bits/value

‖R‖ = 4.7e-3

Tucker
0.53 bits/value

‖R‖ = 4.6e-4

VAPOR
2.94 bits/value

‖R‖ = 5.3e-4

LZ4A
0.79 bits/value

‖R‖ = 1.4e-1

HVQ
5.00 bits/value

‖R‖ = 3.1e-4

input data 
autocorrelation



LLNL-PRES-736379
29

Compressors other than ZFP show artifacts in 
derivative computations (velocity divergence)



LLNL-PRES-736379
30

Compressors other than ZFP show artifacts in 
derivative computations (velocity divergence)



LLNL-PRES-736379
31

Compressors other than ZFP show artifacts in 
derivative computations (velocity divergence)



LLNL-PRES-736379
32

§ Lossy data compression can be viable in scientific computing workflows
— ~100x compression acceptable for visualization
— ~10x compression acceptable for quantitative data analysis
— ~4x compression of simulation state with <0.1% error in final quantity of interest

§ Little effort has focused on metrics for evaluating compression errors
— Error distributions can vary greatly between compressors but are rarely considered

• Difficult to prescribe desired shape of error distribution
— Z-checker tool, developed by Cappello and others at Argonne, is a good first step

§ HPC community needs to provide analysis code with simulation results
— How else can we quantify impact of lossy compression?
— Need collection of “standard” data sets for evaluating & comparing compressors

§ What statistical metrics and properties should we be concerned with?

Conclusions



LLNL-PRES-736379
33

[fpzip] Lindstrom & Isenburg, “Fast and efficient compression of floating-point data,” 2006

[HVQ] Schneider & Westermann, “Compression domain volume rendering,” 2003

[ISABELA] Lakshminarasimhan et al., “ISABELA for effective in situ compression of scientific data,” 2013

[JPEG2000] Woodring et al., “Revisiting wavelet compression for large-scale climate data using JPEG 2000 
and ensuring data precision,” 2011

[LP] Ibarria et al., “Out-of-core compression and decompression of large n-dimensional scalar fields,” 2003

[LZ4A, LZ4P] Kunkel et al., “Decoupling the selection of compression algorithms from quality constraints 
with SCIL,” 2017

[SQ] Iverson et al., “Fast and effective lossy compression algorithms for scientific datasets,” 2012

[SZ] Di & Cappello, “Fast error-bounded lossy HPC data compression with SZ,” 2016

[Tucker] Ballester & Pajarola, “Lossy volume compression using Tucker truncation and thresholding,” 2016

[VAPOR] Clyne et al., “Interactive desktop analysis of high resolution simulations,” 2007

[ZFP] Lindstrom, “Fixed-rate compressed floating-point arrays,” 2014

References




